
Appendix323

In the appendix, we provide more details about the experiments discussed in the main text. Section324

A introduces the implementation details of the diffusion model and the specific content and form325

of the guide function. Section B details the implementation of the system and showcases the326

visualization of scenarios in the simulator. Section C covers the relevant content of the SenseTime327

driving dataset, while Section D delves into the detailed experimental configurations for multi-style328

reinforcement learning experiments. Code and Demos are available at https://github.com/329

tsinghua-fib-lab/LCSim.330

A Diffusion Model331

The process of the diffusion model generating vehicle action sequences is shown in Figure 7. With332

the road network topology and vehicle historical states as input, the model generates future action333

sequences for the vehicle through a denoising diffusion process.334

Due to the relevant regulations of the Waymo Open Motion Dataset (WOMD) [26], we cannot provide335

the parameters of the model trained on it. In this section, we introduce the implementation details of336

the diffusion model and the hyperparameters used for training and inference in detail to ensure that337

the relevant experimental results can be easily reproduced.338

t = 0t = T ...

Figure 7: The process of generating vehicle action sequences by diffusion model.

A.1 Problem Formulation339

Similar to [23], we denote a traffic scenario as ω = (M,A1:T ), where M contains the information of340

a High-Definition (HD) map and A1:T = [A1, ..., AT ] is the state sequence of all traffic participates.341

Each element mi of M = {m1, ...,mNm} represents the map factor like road lines, road edges,342

centerline of lanes, etc. And each element ati of At = {a1t , ..., a
Na
t } represents the state of the ith343

traffic participate at time step t including position, velocity, heading, etc.344

Given the map elements M = {m1, ...,mNm} and the historical states of agents Atc−Th:tc , where345

Th is the number historical steps and 0 < Th < tc, the model generates the future states of agents in346

the scenario Atc:tc+Tf
, where Tf is the number of future steps.347
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Table 4: The attention mechanisms of scene encoder.

Query Key Value

Agent Temporal va
i,tc

va
i,t va

i,t ⊕ Pos(t− tc)

Map-Map vm
i vm

j vm
j ⊕ em→m

ij

Agent-Map va
i,tc

vm
j vm

j ⊕ ea→m
ij

Agent-Agent va
i,tc

va
j,tc

va
j,tc

⊕ ea→a
ij

A.2 Model Architecture348

Scene Encoder. We implemented our scene encoder based on MTR [32] and QCNet [51]. As349

mentioned before, at each time step tc, the input to the scene encoder includes the map elements M =350

{m1, ...,mNm} and the historical states of agents Atc−Th:tc . First, we construct a heterogeneous351

graph G = (V,E) based on the geometric relationships among input features. The node set V352

contains two kinds of node va and vm and the edge set E consists of three kinds of edge ea→a, ea→m353

and em→m. Connectivity is established between nodes within a certain range of relative distances.354

For nodes like vai and vmj , their node features contain attributes independent of geographical location355

like lane type, agent type, agent velocity, etc. The position information of nodes is stored in the356

relative form within the edge features like ea→m
ij = [pm

j − pa
i , θ

m
j − θai ], where p and θ are position357

vector and heading angle of each node at current time step tc. For each category of elements in the358

graph, we use an MLP to map their features into the latent space with dimension Nh to get the node359

embedding va
i,t(tc − Th ≤ t ≤ tc), vm

j and edge embedding ea→a
ij , ea→m

ij , em→m
ij . Then we apply360

four attention mechanisms in Table 4 to them to get the final scene embedding. The scene embedding361

consists of two components: the map embedding with a shape of [M,Nh], and the agent embedding362

with a shape of [A, Th, Nh].363

Embeddings

𝑵 𝟎, 𝝈𝟐 
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Figure 8: The architecture of diffusion decoder.

Diffusion Decoder. Figure 8 shows the whole architecture of the diffusion decoder. Similar to [52],364

we implemented a DETR-like decoder to model the joint distribution of multi-agent action sequences.365

Denote the generation target as x ∈ RA×Tf×Na , which represents future Tf steps’ actions of agents366

in the scenario. Firstly, noise z ∼ N
(
0, σ2

)
is added to the input sequence. Subsequently, the action367

sequence with noise for each agent is mapped to a latent space via an MLP, serving as the query368

embedding for that agent. The query is then added to the Fourier Embedding with noise level σ,369

similar to positional encoding, to inform the model about the current noise level. Next, the query370
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Table 5: Model parameters
Parameter Value

Input Size 2
Output Size 2
Embedding Size 128
Num Historical Steps 10
Num Future Steps 80
Num Polygon Types 20
Num Freq Bands 64

Map Encoder
Hidden Dim 64
Num Layers 5
Num Pre Layers 3

Agent Encoder
Time Span 10
a2a Radius 50
pl2a Radius 50
Num Layers 2
Num Heads 8
Head Dim 64
Dropout 0.1

Diff Decoder
Output Head False
Num t2m Steps 10
pl2m Radius 150
a2m Radius 150
Num Layers 2
Num Recurrent Steps 2
Num Heads 8
Head Dim 64
Dropout 0.1

Table 6: Training parameters
Parameter Value

Batch Size 16
Num Epochs 200
Weight Decay 0.03
Learning Rate 0.0005
Learning Rate Schedule OneCycleLR
σdata 0.1
cin(σ) 1/

√
σ2 + σ2

data

cskip(σ) σ2
data/(σ

2 + σ2
data)

cout(σ) σ · σdata/
√

σ2 + σ2
data

cnoise(σ)
1
4
lnσ

Noise Distribution ln(σ) ∼ N
(
Pmean , P

2
std

)
Pmean -1.2
Pstd 1.2

vector undergoes cross-attention with map embeddings, embeddings of other agents in the scenario,371

and the historical state embedding of the current agent, resulting in a fused agent feature vector372

incorporating environmental information. Following this, self-attention is applied to the feature373

vectors of each agent to ensure the authenticity of interaction among the action sequences generated374

for each agent. Finally, the feature vectors from the latent space are mapped back to the agent’s action375

space via an MLP to obtain the de-noised agent action sequence.376

A.3 Training Details377

Training Target. Diffusion model estimates the distribution of generation target x ∼ p(x) by378

sampling from pθ(x) with learnable model parameter θ. Normally we have pθ(x) = −fθ(x)
Zθ

,379

and use max-likelihood maxθ
∑N

i=1 log pθ(xi) to get parameter θ. However, to make the max380

likelihood training feasible, we need to know the normalization constant Zθ, and either computing381

or approximating it would be a rather computationally expensive process, So we choose to model382

the score function ∇x log pθ(x;σ) rather than directly model the probability density, with the score383

function, one can get data sample x0 ∼ pθ(x) by the following equation [17]:384

x0 = x(T ) +
∫ 0

T
−σ̇(t)σ(t)∇x log pθ(x(t);σ(t))dt where x(T ) ∼ N

(
0, σ2

maxI
)

(1)

On this basis, we add a condition c composed of scene embeddings and use our model to approximate385

the score function ∇x log pθ(x; c, σ) ≈ (Dθ(x; c, σ)− x) /σ2, which leads to the training target386

[17]:387
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Ex,c∼χcEσ∼q(σ)Eϵ∼N (0,σ2I) ∥Dθ(x+ ϵ; c, σ)− x∥22 (2)

χc is the training dataset combined with embeddings computed by the scene encoder, and q(σ)388

represents the schedule of the noise level added to the original data sample. For better performance,389

we introduce the precondition as described in [18] to ensure that the input and output of the model390

both follow a standard normal distribution with unit variance:391

Dθ(x; c, σ) = cskip (σ)x+ cout (σ)Fθ (cin (σ)x; c, cnoise (σ)) (3)

Here, Fθ(·) represents the original output of the diffusion decoder. In the experiment, we used the392

magnitude and direction of vehicle speed as the target for generation.393

Experiment Setting. We trained our diffusion model on the Waymo Open Motion Dataset (WOMD)394

[26]. Each traffic scenario in the dataset has a duration of 9 seconds. We used the map information395

and the historical state of the previous 1 second as input to the model and generated future vehicle396

action sequences for the next 8 seconds. The training was conducted on a server with 4 × Nvidia397

4090 GPUs. We set the batch size for training to 16 and trained with the OneCycleLR learning rate398

schedule for 200 epochs. The entire training process lasted approximately 20 days. The detailed399

parameters of the model and the training process are shown in Table 5 and Table 6.400

A.4 Guide Functions401

Following [50, 17], we calculate the cost function L : RA×Tf×Na 7→ R based on the intermediate402

results of the generation process and propagate gradients backward to guide the final generation403

outcome. In our experiments, the control objectives include the vehicle’s maximum acceleration,404

target velocity, time headway, and relative distance to the preceding car during car-following, and405

generating adversarial behavior by controlling nearby vehicles to approach the current vehicle. Denote406

vehicle i at timestep t has states acci,t, vi,t, xi,t, yi,t, headingi,t, and dist(i, j) computes the relative407

distance between vehicle i and vehicle j at timestep t when vehicle i is followed by vehicle j on the408

same lane. Table 7 shows the details of the cost functions.409

Table 7: The cost functions used in the guided generation process.

Guide Target Cost Function

max acceleration
∑A

i=1

∑Tf

t=1 max(0, |acci,t| − accmax)

target velocity
∑A

i=1

∑Tf

t=1 ∥ vi,t − vtarget ∥22
time headway

∑Tf

t=1

∑
i ̸=j |

dist(i,j)
∥vj,t∥2

2
− thwtarget | where i is followed by j at t

relative distance
∑Tf

t=1

∑
i ̸=j | dist(i, j)− distarget | where i is followed by j at t

goal point
∑A

i=1

∑Tf

t=1 ∥ (xi,t, yi,t)− (xgoali,t , ygoali,t) ∥22
no collision

∑Tf

t=1

∑
i ̸=j I[∥ (xi,t, yi,t)− (xj,t, yj,t) ∥22≤ ϵ]

no off-road
∑A

i=1

∑Tf

t=1 I[∥ (xi,t, yi,t)− (xoff-road, yoff-road) ∥22≤ ϵ]

B Simulation System410

B.1 Scenario Generator411

We defined a unified map and vehicle Origin-Destination (OD) format based on Protobuf4. Addition-412

ally, we have developed format conversion tools designed for the Waymo and Argoverse datasets, the413

conversion results can be seen in Figure 9.414

4https://github.com/tsinghua-fib-lab/LCSim/blob/main/lcsim/protos
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Figure 9: Traffic scenarios from WOMD (blue box) and Argoverse (yellow box).

B.2 Policy Details415

We implemented five different policies to support traffic simulation in various scenarios:416

• ExpertPolicy: The vehicles strictly follow the given action sequences to proceed.417

• BicycleExpertPolicy: Based on the expert policy, we impose kinematic constraints on the vehicle’s418

behavior using a bicycle model to prevent excessive acceleration and steering. By default, we set419

max acceleration to 6.0 m/s2 and max steering angle to 0.3 rad.420

• LaneIDMPolicy: Under this policy, vehicles ignore the action sequences and proceed along the421

center line of their current lane. The vehicle’s acceleration is calculated using the IDM model and422

lane-changing behavior is generated using the Mobil model.423

• TrajIDMPolicy: Vehicles move along the trajectories computed based on the action sequence, but424

their acceleration is controlled by the IDM Mode to prevent collisions.425

• RL-based Policy: A PPO [31] agent trained based on our simulator, its observation space contains426

the scene embedding and the action sequence. The action space consists of acceleration and steering427

values. The training environment of this agent is the second one, enabling diffusive simulation with428

Waymo-style vehicle behavior.429
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For the IDM model in these policies, the default configuration is that accmax = 5m/s2, thw =430

2.0s, vtarget = 20m/s.431

C SenseTime Driving Dataset432

C.1 Dataset Overview433

SenseTime driving dataset comprises about 426.26 hours of vehicle driving logs collected from434

vehicles based on SenseAuto5 in the Beijing Yizhuang area and the whole dataset is split into 765435

scenarios. The data is presented in a format similar to vehicle trajectories in the Waymo dataset with436

a sampled rate of 10 Hz. However, the road networks of the scenarios are not provided in this dataset,437

so we can not train our model on it, but due to the sufficient duration of the data, we can analyze438

the behavioral characteristics of vehicles within the data collection area. This analysis provides a439

reference for constructing driving scenarios with different styles.440

Understandably, due to confidentiality regulations, the complete dataset cannot be released. However,441

we will share the statistical distribution data of vehicle behaviors obtained from the dataset.442

C.2 Vehicle Behavior Analysis443

We conducted statistical analysis on the dataset, focusing on metrics such as max acceleration, usual444

brake acceleration, velocity, relative distance, relative velocity, and time headway during the car445

following process, Figure 10 shows the results. This analysis allowed us to derive the driving behavior446

characteristics of vehicles in the Yizhuang area.447

Figure 10: The analysis of SenseTime driving dataset.

D Multi-Style Reinforcement Learning448

We constructed single-agent reinforcement learning experiments based on the Waymo traffic scenarios449

with our guided diffusive simulation to see the influence of styles of scenarios on policy learning.450

5https://www.senseauto.com/
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D.1 Reinforcement Learning Setup451

We constructed a reinforcement learning environment based on the validation set of the Waymo452

dataset. 4,400 scenarios are selected from the validation set and further divided into a training set453

containing 4,000 scenarios and a test set containing 400 scenarios. We trained a PPO [31] agent on454

the training set and evaluated its performance on the test set.455

Observation Spec. Observation of the agent consists of two parts:456

• Scene Embedding: Embedding computed by scene encoder of the diffusion model with size of [Nh],457

by applying cross attention to map polygons and agent states, this feature contains information about458

surrounding vehicles, road elements, and the vehicle’s own historical states. In this experiment, we459

use Nh = 128 following the setup of the diffusion model.460

• Route: We sampled the vehicle’s trajectory points within the next 1 second at a frequency of 10Hz461

and projected them into a relative coordinate system based on the vehicle’s current position and462

orientation. The shape of the route data is [10, 2], representing the reference path of the vehicle’s463

forward movement. If the vehicle behavior in the driving environment is generated by a diffusion464

model, then this path will be accumulated from the behavior sequences generated by the model for465

the vehicle.466

Action Spec. We let the agent directly control the throttle and steering angle of the vehicle. The467

agent’s output is a two-dimensional vector with a range [−1, 1]. This vector is multiplied by the468

maximum range of acceleration and steering angle, resulting in the final vehicle action. In this469

experiment, the maximum acceleration and steering angle of the vehicle are set to 6.0 and 0.3,470

respectively.471

Rollout Setting. To let the agent explore every scenario in the training set, we randomly divided the472

4000 scenes in the training set into 20 parts, each containing 200 different scenarios. We used 20473

parallel threads to rollout episodes, with each thread pre-loading and pre-calculating map embeddings474

for 200 different training scenarios. During the rollout process, after the current episode ends, the475

environment automatically switches to the next scenario, and this cycle continues iteratively.476

Reward Function. Our goal is to make the vehicle progress along the given route while avoiding477

collisions and staying within the road. Therefore, we provide the following formula for the reward:478

R = Rforward + Pcollision + Proad + Psmooth +Rdestination. (4)

The meanings of elements in the formula are as follows:479

• Rforward: A dense reward to encourage the vehicle to drive forward along the given route. We480

project the current position and last position of the vehicle onto the Frenet coordinate of the route481

and calculate dt, dt−1, st, st−1, the value of the reward would be 0.1× ((st−st−1)− (dt−dt−1)).482

• Pcollision: Penalty for collision, When the vehicle collides, the value will be −10, and the current483

episode terminates; otherwise, the value is 0.484

• Proad: Penalty for driving off the road, when this happens, the value will be −5, and the current485

episode terminates; otherwise, the value is 0.486

• Psmooth: Following [23], we implemented Psmooth = min(0, 1/vt − |a[0]|) to avoid a large487

steering value change between two timesteps.488

• Rdestination: When an episode ends, we check if the vehicle has reached the destination of the489

given route, which means the distance to the endpoint of the route is within 2.5 meters. If yes, the490

reward value is 10; otherwise, it’s −5.491

D.2 Multi-Style Environments Building492

We build four kinds of environments with different driving styles using cost functions in Table 7:493
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• The original Waymo driving environment, in this environment, vehicles base their actions on real494

trajectories from the Waymo driving logs.495

• The Waymo-style environment with diffusive simulation. This environment utilizes the diffusion496

model without guide functions, the vehicle behaviors are consistent with the Waymo dataset.497

With the diffusion model’s nature, it generates diverse vehicle trajectories under the same initial498

conditions, exposing the agent to a broader range of traffic scenarios during training.499

• The SenseTime-style environment with guided diffusive simulation. This environment follows500

the driving style observed in the SenseTime driving dataset, emphasizing a more "gentle" driving501

behavior compared to the Waymo-based environment. In this environment, we use cost functions502

on max acceleration with accmax = 3m/s2, and on time headway with thwtarget = 2.5s.503

• The adversarial environment. This environment is implemented by guiding nearby vehicles closer504

to the vehicle controlled by the RL agent. For vehicles in front of or alongside the main vehicle, we505

guide their action generation with distarget = 0 to the main vehicle, thereby encouraging more506

sudden braking and cutting-in behaviors, increasing the aggressiveness of the environment.507
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